

Communication

H–C–SiH: Direct Generation and Spectroscopic Identification of Ethylidene's Cousin

Peter R. Schreiner, Hans Peter Reisenauer, Kurt W. Sattelmeyer, and Wesley D. Allen

J. Am. Chem. Soc., **2005**, 127 (35), 12156-12157• DOI: 10.1021/ja052043r • Publication Date (Web): 16 August 2005 Downloaded from http://pubs.acs.org on March **25**, **2009**

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 2 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 08/16/2005

H-C-SiH₃: Direct Generation and Spectroscopic Identification of Ethylidene's Cousin

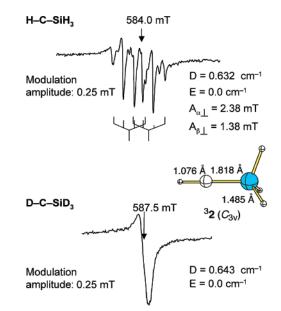
Peter R. Schreiner,*,§ Hans Peter Reisenauer,§ Kurt W. Sattelmeyer,^{||} and Wesley D. Allen*,^{||}

Institut für Organische Chemie der Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany, and Center for Computational Chemistry, The University of Georgia, Athens, Georgia 20603-2525

Received March 31, 2005; E-mail: prs@org.chemie.uni-giesssen.de; wdallen@ccqc.uga.edu

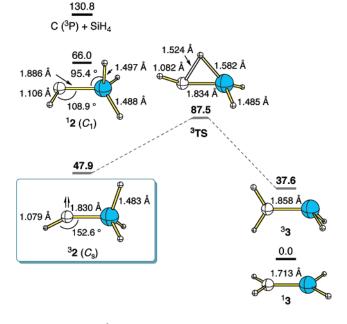
Ethylidene (1, H–C–CH₃, methylcarbene) has thus far escaped direct spectroscopic identification because the barrier for the C–H shift to ethylene is very small ($\Delta H^{\ddagger} = 1-2$ kcal mol⁻¹).¹ The photochemical or thermal generation of 1 from diazoethane or diazirine invariably gives the singlet state, although the triplet is the electronic ground state ($\Delta E_{\rm ST} = 4-5$ kcal mol⁻¹).² As the rate for intersystem crossing is expected to be smaller than the rate for the H-shift, the triplet state seems virtually inaccessible by the common carbene preparation routes.³ The existence of singlet ethylidene as a diazo decomposition product has been inferred by trapping 1 with CO to give methylketene in CO-containing matrices at 10 K⁴ or perdeuterated 1 (deuteration decreases the rate of rearrangement) with pyridine to yield ethylidene-*d*₄-pyridine ylide (in several aprotic solvents).⁵

The present communication reports the direct generation as well as spectroscopic and computational characterization of the siliconsubstituted analogue of **1**, namely, silaethylidene $H-C-SiH_3$ (**2**) in its triplet ground state (³**2**). Structure **2** can also be viewed as a small, monosubstituted methylene derivative, for which condensed phase infrared spectra are virtually nonexistent.^{6,7}


Our novel strategy for the preparation of ³2 avoids the decomposition of diazo or other precursors. Instead, we generate ³2 directly through the reaction of ground-state triplet carbon atoms with SiH₄ (Scheme 1). The carbon atoms are prepared by laser ablation of a

Scheme 1

SiH₄ + C (³P)
$$\xrightarrow{11 \text{ K}}_{\text{Ar matrix}}$$
 H₃Si $\xrightarrow{C}_{\text{H}}$ + H₂Si=CH₂ + H ^{\times Si}-CH₃
³2 3 4


rotating graphite disk in a closed-cycle helium refrigerator system. Matrix samples were prepared by co-deposition of the products of the laser ablated graphite plume with an SiH₄/Ar gas mixture on the surface of a cold window (10–12 K); complete experimental details are described elsewhere.⁸ The analogous preparation of ³2 through the reaction of silicon atoms with methane does *not* give ³2 through photochemical rearrangement of triplet silaethylene ³3 because the triplet surface is energetically inaccessible;⁹ much more stable silylene **4** is formed instead.

The EPR spectrum clearly identifies **2** as a triplet (Figure 1). The zero-field splitting parameters, *E* and *D*, are 0.0 and 0.632 cm⁻¹, respectively; a hyperfine structure is observable [$A_{\alpha\perp} = 2.38$ mT and $A_{\beta\perp} = 1.38$ mT]. These data are consistent with a (time-averaged, vide infra) quasi-linear H–C–Si moiety, in agreement with earlier findings on H–Si(CH₃)₃ and H–SiH(CH₃)₂.¹⁰ The sizable *D* value indicates that the spin is localized on one center, as expected for a triplet carbene. Owing to the much reduced hyperfine deuterium coupling, the spectrum of the perdeuterated isotopolog is not resolved.

Figure 1. EPR spectrum (*x*-band, 9.44 GHz, *xy*₂-line) of **2** and its perdeuterated isotopolog (bottom) at 11 K. A full overview ESR spectrum is given in the Supporting Information.

Scheme 2. Complete Basis Set CCSD(T) Relative Energetics (kcal mol^{-1}) on the HCSiH₃ PES

To characterize ${}^{3}2$ further, we optimized all species in Scheme 2 using high-level coupled-cluster theory [CCSD(T)]¹¹ with a highquality cc-pVTZ basis set.¹² Focal-point (fp) extrapolations¹³ to the

[§] Justus-Liebig-Universität Giessen.

[&]quot;The University of Georgia.

Table 1. Comparison of Theoretical [CCSD(T)/cc-pVTZ], Harmonic (ω), and Fundamental (ν) Vibrational Frequencies (in cm⁻¹) to Experimental Bands (Ar matrix, 11 K) for ³2 ($C_{3\nu}$ and C_s) and its Perdeuterated Isotopolog. Relative IR Absorption Intensities (*I*_{rel}) Are Included from MP2/cc-pVTZ Computations (Overview IR Spectra Are Given in the Supporting Information)

			-	-
description	ω (C _{3v})	ω (C _s) (I _{rel})	ν (C _s)	expt.
		HCSiH ₃		
CH str. (a_1)	3298	3255 (0.01)	3142	
SiH_3 str. (a_1)	2235	2250 (0.41)	2177	
SiH_3 str. (e)	2232	2226 (0.53)	2139	2139.1
		2225 (0.31)	2138	
SiH_3 def. (a_1)	959	955 (1.00)	943	
SiH_3 def. (e)	958	958 (0.25)	938	929.1
		958 (0.24)	938	
SiC str. (a_1)	813	799 (0.13)	789	789.8
SiH_3 rock (e)	646	659 (0.21)	648	631.3
		645 (0.20)	634	
HCSi bend (e)	301 <i>i</i>	395 (0.10)		
		118 (0.13)		
		DCSiD ₃		
CD str. (a_1)	2436	2401 (0.05)	2341	
SiD_3 str. (e)	1612	1622 (0.61)	1577	
		1608 (0.65)	1563	1563.0
SiD_3 str. (a_1)	1590	1588 (0.31)	1552	
SiC str. (a_1)	796	786 (1.00)	777	784.8
SiD_3 def. (a_1)	689	683 (0.50)	676	
SiD_3 def. (e)	688	688 (0.31)	676	
		688 (0.29)	676	
SiD_3 rock (e)	486	509 (0.26)	504	
		492 (0.24)	487	472.4
DCSi bend (e)	230 <i>i</i>	293 (0.10)		
		88 (0.14)		

complete basis set CCSD(T) limit then pinpointed the relevant energetics on the HCSiH₃ surface. While ³2 exhibits a C_s equilibrium structure with a H–C–Si angle of 152.6°, a C_{3v} transition state with a linear carbene moiety lies only 0.24 kcal mol⁻¹ higher (fp limit). This barrier can be surmounted readily by zero-point vibrations. In addition to harmonic vibrational frequencies for ${}^{3}2(C_{3v})$ and ${}^{3}2(C_{s})$, C_{3v} anharmonicities were determined by applying second-order vibrational perturbation theory (VPT2)¹⁴ to a CCSD(T)/cc-pVTZ complete quartic force field computed from a grid of 2062 tightly converged energy points. The final CCSD(T)/ cc-pVTZ predictions [$\nu(C_s)$ in Table 1] for the vibrational spectrum of ³2 were obtained by appending the C_{3v} anharmonicities to the harmonic frequencies of the bent (C_s) structure. The agreement with the experimental IR fundamentals is remarkable, generally within 10 cm⁻¹ and without any empirical scaling of the theoretical frequencies.

As there is apparently no energetically feasible path for rearrangement of the more stable 4 (Scheme 1 and Supporting Information) back to ${}^{3}2$, the latter must form in the reaction of the carbon atoms with silane, and the Si-H shift barrier for rearrangement of ${}^{3}2$ to the triplet silene (${}^{3}3$) must be large (Scheme 2). Indeed, the computed barrier for this unfavorable three center-three electron hydrogen shift is 39.6 kcal mol⁻¹, retarding the rearrangement to 3 3 at the experimental conditions.

The computed $\Delta E_{\rm ST}$ for **2** is 18.1 kcal mol⁻¹ and thus about twice as large as that of methylene. Hence, the SiH₃ substituent preferentially stabilizes the triplet, while a methyl group (as in 1) favors the singlet state.² The difference in stabilization energies, as derived from the differences in $\Delta E_{\rm ST}$ of 2 versus 1, amounts to about 15 kcal mol⁻¹. This highlights the triplet stabilizing power of electropositive elements attached to carbene centers, whereby σ -electron donation¹⁵ outweighs singlet hyperconjugation. The latter is evident from the C_1 structure of ¹2, in which one Si-H bond is bent ($\angle C-Si-H = 95.4^{\circ}$) toward the empty p-orbital on carbon and is lengthened by 0.009 Å compared to the remaining Si-H bonds (Scheme 2).7

We have shown that triplet silaethylidene ${}^{3}2$, which is indefinitely stable under low-temperature matrix isolation conditions, is accessible through the direct reaction of atomic ground-state triplet carbon atoms with silane. The structures and IR spectra of ${}^{3}2$ and its perdeuterated isotopolog were unequivocally assigned through matching of experimental and high-level computational data.

Acknowledgment. The work in Giessen was supported by the Fonds der Chemischen Industrie.

Supporting Information Available: Experimental setup and spectra, tables of electronic total energies, Cartesian coordinates, and vibrational frequencies of all optimized species; internal coordinate quadratic force field of ${}^{3}2$ and analysis of the normal modes of vibration of the parent and deuterated isotopologs. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) (a) Gallo, M. M.; Schaefer, H. F. J. Phys. Chem. 1992, 96, 1515. (b) Miller, D. M.; Schreiner, P. R.; Schaefer, H. F. J. Am. Chem. Soc. 1995, 117, 4137. (c) Ma, B.; Schaefer, H. F. J. Am. Chem. Soc. **1994**, 116, 3539. (d) Hill, B. T.; Zhu, Z. D.; Boeder, A.; Hadad, C. M.; Platz, M. S. J. Phys. Chem. A **2002**, 106, 4970.
- (2) (a) Bettinger, H. F.; Schreiner, P. R.; Schleyer, P. v. R.; Schaefer, H. F. In The Encyclopedia of Computational Chemistry; Schleyer, P. v. R., Allinger, N. L., Clark, T., Gasteiger, J., Kollman, P. A., Schaefer, H. F., Schreiner, P. R., Eds.; John Wiley & Sons: Chichester, U.K., 1998; pp 183. (b) Köhler, H. J.; Lischka, H. J. Am. Chem. Soc. **1982**, 104, 5884. (c) Raghavachari, K.; Frisch, M. J.; Pople, J. A.; Schleyer, P. v. R. Chem. Phys. Lett. 1982, 85, 145.
- (3) Evanseck, J. D.; Houk, K. N. J. Phys. Chem. 1990, 94, 5518.
- (4) Seburg, R. A.; McMahon, R. J. J. Am. Chem. Soc. 1992, 114, 7183.
- (5) Modarelli, D. A.; Platz, M. S. J. Am. Chem. Soc. 1993, 115, 470.
 (6) (a) McKellar, A. R. W.; Bunker, P. R.; Sears, T. J.; Evenson, K. M.; Saykally, R. J.; Langhoff, S. R. J. Chem. Phys. 1983, 79, 5251. (b) Petek, (6)H.; Nesbitt, D. J.; Ogilby, P. R.; Moore, C. B. J. Phys. Chem. 1983, 87, 5367
- (7) Schreiner, P. R.; Reisenauer, H. P.; Allen, W. D.; Sattelmeyer, K. W. Org. Lett. 2004, 6, 1163.
- (9) Schreiner, P. R.; Reisenauer, H. P. In preparation.
 (9) Maier, G.; Reisenauer, H. P.; Glatthaar, J. *Chem. Eur. J.* 2002, 8, 4383. (10) Chedekel, M. R.; Skoglund, M.; Kreeger, R. L.; Shechter, H. J. Am. Chem. Soc. 1976, 98, 7846.
- (11) (a) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem. Phys. Lett. 1989, 157, 479. (b) Lee, T. J.; Scuseria, G. E. In Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy; Langhoff, S. R., Ed.; Kluwer: Dordrecht, The Netherlands, 1995; p 47. (c) A UHF-based CCSD(T) formalism was employed here for the triplet species.
- (12) (a) Dunning, T. H., Jr.; Peterson, K. A.; Woon, D. E. In The Encyclopedia of Computational Chemistry; Schleyer, P. v. R., Allinger, N. L., Clark, T., Gasteiger, J., Kollman, P. A., Schaefer, H. F., Schreiner, P. R., Eds.; John Wiley & Sons: Chichester, U.K., 1998; Vol. 1, p 88. (b) Dunning, T. H., Jr. J. Chem. Phys. **1989**, 90, 1007.
- (13) Exemplary applications and original references can be found in: Császár, A. G.; Allen, W. D.; Schaefer, H. F. J. Chem. Phys. 1998, 108, 9751. The focal-point extrapolations of the current study employed cc-pVXZ HF (X = 3-5) and CCSD(T) (X = 3, 4) single points at CCSD(T)/cc-pVTZ optimized geometries and included CCSD(T)/cc-pVTZ harmonic zero-point vibrational corrections.
- (14) Papousek, D.; Aliev, M. R. Molecular Vibrational-Rotational Spectra; Elsevier: Amsterdam, 1982. The large-amplitude H-C-Si bending mode (ν_8) and its anharmonicity contributions (χ_{8i}) to the remaining smallamplitude normal vibrations (v_i) were excluded from the current analysis to ensure the validity of the VPT2 approach.
- (15) (a) Schoeller, W. W. J. Chem. Soc., Chem. Commun. 1980, 124. (b) Pauling, L. J. Chem. Soc., Chem. Commun. 1980, 688.

IA052043R